...
--after-sb-0pri policy
스플릿 브레인 시나리오가 감지되고 두 노드 중 어느 것도 Primary 역할을 수행하지 않는 경우 대응 방법을 정의합니다. 스플릿 브레인은 항상 두 노드 사이에서 결정되며 두 노드가 연결될 때 감지합니다. 정의 된 정책은 다음과 같습니다.
disconnect 단순히 연결을 끊습니다.
discard-younger-primary,
discard-older-primary 먼저 Primary 가 됬던 노드(discard-younger-primary) 또는 마지막으로 Primary 가 됬던 노드(discard-older-primary)를 폐기합니다. 만일 두 노드가 독립적으로 Primary 가 됬었다면 discard-least-changes 정책을 사용합니다.
discard-zero-changes 하나의노드에서만 데이터를 쓴 경우 이 노드를 기준으로 재 동기화 합니다. 두 노드가 모두 데이터를 쓴 경우 연결을 끊습니다.
discard-least-changes 많은 데이터를 쓴 노드를 기준으로 동기화 합니다.
discard-node-nodename 명명된 노드를 항상 폐기합니다.
--after-sb-1pri policy
Primary 노드 1 개와 Secondary 노드 1 개로 스플릿 브레인이 감지되는 경우 대처 방법을 정의합니다. (두 노드가 연결될 때 스플릿 브레인 시나리오를 감지하므로 스플릿 브레인 결정은 항상 두 노드 중 하나입니다.) 정의 된 정책은 다음과 같습니다.
disconnect 단순히 연결을 끊습니다.
consensus 희생노드가 선택될 수 있다면 자동으로 해결합니다. 그렇지 않으면, disconnect처럼 동작합니다.
discard-secondary Secondary 의 노드를 폐기합니다.
--after-sb-2pri policy
스플릿 브레인 시나리오가 감지되고 두 노드가 모두 Primary 역할을 하는 경우 대응 방법을 정의합니다. (두 노드가 연결될 때 스플릿 브레인 시나리오를 감지하므로 스플릿 브레인 결정은 항상 두 노드 중 하나 입니다.) 정의 된 정책은 다음과 같습니다. 2 primary 스플릿 브레인의 경우 disconnect 를 통한 수동 복구만 사용할 수 있습니다.
disconnect 단순히 연결을 끊습니다.
--connect-int time
bsrsetup connect로 두 노드 간 연결이 구성되는 즉시 연결 설정을 시도합니다. 이것이 실패하면 bsr은 connect-int초 동안 기다렸다가 반복합니다. connect-int의 기본값은 3초입니다.
--csums-alg hash-algorithm
일반적으로 두 노드가 다시 동기화되면 동기화 대상은 동기화 소스로부터 out-of-sync 데이터를 요청하고 동기화 소스는 데이터를 전송합니다.
많은 사용 패턴에서 볼 때 상당수의 블록이 실제로 동일합니다. csums-alg 알고리즘이 지정되면 동기화되지 않은 데이터를 요청할 때 동기화 대상도 현재 보유한 데이터의 해시를 전송합니다. 동기화 소스는이 해시를 자기의 데이터와 비교합니다. 해시가 다르면 동기화 대상에 새 데이터를 보내고 해시가 같으면 데이터가 동일하다는 것을 알려줍니다. 이렇게 하면 필요한 네트워크 대역폭이 줄어들지만 CPU 사용률이 높아지고 SyncTarget의 읽기 I/O가 증가합니다 . csums-alg는 커널이 지원하는 보안 해시 알고리즘 중 하나로 설정 될 수 있습니다. /proc/crypto에 나열된 shash 알고리즘을 참조하십시오. 기본적으로 csums-alg는 설정되어 있지 않습니다.
--data-integrity-alg alg
bsr은 일반적으로 TCP/IP 프로토콜에 내장 된 데이터 무결성 검사에 의존하지만, 데이터 무결성 알고리즘이 구성된 경우 이 알고리즘을 사용하여 네트워크를 통해 수신 된 데이터가 발신자가 보낸 것과 일치하는지 확인합니다. 데이터 무결성 오류가 감지되면 bsr은 네트워크 연결을 닫고 다시 연결하여 재 동기화를 트리거합니다. data-integrity-alg는 커널이 지원하는 보안 해시 알고리즘 중 하나로 설정 될 수 있습니다. /proc/crypto에 나열된 shash 알고리즘을 참조하십시오. 기본적으로이 메커니즘은 해제되어 있습니다. 관련된 CPU 오버 헤드로 인해 운영 환경에서는 이 옵션을 사용하지 않는 것이 좋습니다.
--fencing fencing_policy
펜싱은 두 노드가 연결이 끊어져서 모두 Primary 가 되는 상황을 방지하기위한 예방 조치입니다. 이것은 스플릿 브레인 상황 이라고도 합니다. bsr은 다음과 같은 펜싱 정책을 지원합니다.
dont-care 펜싱 조치가 수행되지 않습니다. 이것이 기본 정책입니다.
resource-only 노드가 연결이 끊긴 Primary 노드가 되면 피어를 차단하려고 합니다. 이것은 "fence-peer" 핸들러를 호출하여 수행됩니다. 핸들러는 대체 통신 경로를 통해 피어에 도달하여 'bsradm outdate minor'를 호출해야 합니다.
resource-and-stonith 노드가 연결이 끊긴 Primary 노드가 되면 모든 IO 작업을 중지하고 fence-peer 핸들러를 호출합니다. fence-peer 핸들러는 대체 통신 경로를 통해 피어에 도달하여 'bsradm outdate minor'를 호출해야 합니다. 그렇게 할 수없는 경우에는 상대방을 (전원 제어)차단해야 합니다. 상황이 해결 되자마자 IO가 재개됩니다. 펜스 피어 핸들러가 실패한 경우 잠재적으로 스플릿 브레인이 발생했다고 판단하고 수동으로 복구해야 합니다.
--ko-count number
송신 버퍼링 시 TX 노드 측의 송신 재시도 회수를 정의합니다.
--max-buffers number
수신 측 peer-request의 최대 버퍼 크기를 정의합니다. 단위는 PAGE_SIZE(대부분의 시스템에서 4KiB)입니다. 가능한 최소 설정은 32(= 128 KiB)로 하드 코딩되어 있습니다. 이 버퍼는 디스크에 쓰거나 디스크에서 읽는 동안 데이터 블록을 보유하는 데 사용됩니다. max-buffers 페이지 이상이 사용 중이면 이 풀의 추가 할당이 제한됩니다. 수신 측에서 I/O 부하를 감당할 수 없는 경우 max-buffers를 늘려야 합니다.
--max-epoch-size number
쓰기 barrier을 발행하기 전에 bsr이 발행 할 수있는 최대 쓰기 요청 수를 정의합니다. 기본값은 2048이며 최소 1과 최대 20000입니다.이 매개 변수를 10 미만의 값으로 설정하면 성능이 저하 될 수 있습니다.
--on-congestion policy,
--congestion-fill threshold,
--congestion-extents threshold
기본적으로 bsr은 TCP 송신 큐가 가득 찬 경우 대기합니다. 이럴 경우 송신 큐를 다시 사용할 수있을 때까지 응용 프로그램에서 추가 쓰기 요청을 생성 할 수 없습니다. bsr을 프록시와 함께 사용하는 경우 전송 대기열이 가득 차기 전에 bsr을 Ahead/Behind 모드로 전환 할 수있는 Pull-ahead 혼잡 정책을 사용하는 것이 좋습니다. 그런 다음 bsr은 비트 맵에 자신과 피어의 차이점을 기록하지만 더 이상 피어에 복제하지 않습니다. 충분한 버퍼 공간이 다시 사용 가능 해지면 노드는 피어와 재 동기화되고 정상 복제로 다시 전환됩니다. 이는 대기열이 가득 차더라도 응용 프로그램 I/O를 차단하지 않는 이점이 있지만 피어 노드가 원본에 비해 훨씬 더 뒤쳐 질 수 있다는 단점이 있습니다. 그리고 재 동기화하는 동안은 피어 노드가 Inconsistent 상태입니다. 사용 가능한 혼잡 정책은 blocking(기본값), disconnect, pull-ahead 입니다. congestion-fill 매개 변수는이 연결에서 복제 중인 데이터가 허용되는 양을 정의합니다. 기본값은 0(혼잡 제어 메커니즘을 사용하지 않도록 설정합니다)이며 최대 1TB입니다. congestion-extents 매개 변수는 Ahead/Behind 모드로 전환하기 전에 활성화 될 수있는 비트 맵 범위의 수를 정의합니다. congestion-extents 매개 변수는 al-extents 보다 작은 값으로 설정 한 경우에만 유효합니다.
--ping-int interval
피어에 대한 TCP/IP 연결이 1 초 이상 유휴 상태 인 경우 bsr은 ping 패킷을 보내 실패한 피어 또는 네트워크 연결이 빨리 감지 되도록 합니다. 기본값은 3초이며 최소 1과 최대 120 초입니다. 단위는 초입니다.
--ping-timeout timeout
ping 패킷에 대한 회신 시간 초과를 정의합니다. 피어가 ping 시간 초과 내에 응답하지 않으면 bsr이 연결을 닫고 다시 연결하려고 시도합니다. 기본값은 3초이며 최소 0.1 초와 최대 3 초입니다. 단위는 10분의 1초입니다.
--protocol name
복제 연결에 지정된 프로토콜을 정의합니다. 지원되는 프로토콜은 다음과 같습니다.
A 로컬 디스크 및 TCP/IP 전송 버퍼에 복사한 즉시 로컬 I/O 를 완료합니다.
B 로컬 디스크에 기록하고 피어에서 복제 데이터를 수신하는 즉시 ACK 를 반환합니다. 로컬에서 ACK 를 수신하면 I/O 를 완료 합니다.
C 로컬 디스크에 기록하고 피어에서 복제 데이터를 디스크에 기록한 후 쓰기 ACK 를 반환합니다. 로컬에서 쓰기 ACK 를 수신하면 I/O 를 완료합니다.
--rcvbuf-size size
TCP/IP 수신 버퍼의 크기를 구성합니다. 값이 0(기본값)이면 버퍼 크기가 동적으로 조정됩니다. 이 매개 변수는 일반적으로 설정하지 않아도 되지만 최대 10MiB의 값으로 설정할 수 있습니다. 기본 단위는 바이트이며 윈도우즈에선 지원하지 않습니다.
--sndbuf-size size
송신 작업자 쓰레드에서 할당하는 TX 버퍼의 크기를 설정합니다. 최대 1TB 까지 설정할 수 있습니다.
--tcp-cork
기본적으로 bsr은 tcp-cork 옵션을 사용하여 커널이 작은 메시지를 작게 보내지 못하게 않도록 억제 합니다. 이로 인해 네트워크 상에서 패킷의 상의 패킷 크기가 커집니다. 이 최적화로 일부 네트워크 스택의 성능이 저하 될 수 있으며 패킷을 모으는 시간 동안의 지연이 발생합니다. tcp-cork 매개 변수를 사용하여 이 최적화를 해제 할 수 있습니다.
--timeout time
네트워크를 통한 응답 시간 초과를 정의합니다. 피어 노드가 지정된 시간 초과 내에 예상 응답을 보내지 않으면 응답이없는 것으로 간주하고 TCP/IP 연결을 닫습니다. 시간 초과 값은 connect-int보다 낮아야 하고 ping-int보다 작아야 합니다. 기본값은 5초이고 10분의 1초로 단위로 지정됩니다.
--use-rle
use-rle 는 run length encoding 을 사용해야 하는지 결정합니다. 클러스터 노드의 각 복제 된 장치에는 각 피어 장치에 대한 별도의 비트 맵이 있습니다. 비트 맵은 로컬 장치와 피어 장치의 차이점을 추적하는 데 사용됩니다. 클러스터 상태에 따라 장치의 비트 맵, 피어 장치의 비트 맵 또는 두 비트 맵에서 디스크 범위가 피어와 다른 것으로 표시 될 수 있습니다. 두 클러스터 노드가 연결되면 서로의 비트 맵을 교환하고 각각 로컬 및 피어 비트 맵의 합집합을 계산하여 전체 차이를 결정합니다. 매우 큰 장치의 경우 비트맵이 비교적 크기 때문에 일반적으로 run length encoding을 사용하여 압축률을 높이고 이를 통해 비트 맵 전송에 필요한 시간과 대역폭을 절약 할 수 있습니다. 기본적으로 활성화 되어 있습니다.
--verify-alg hash-algorithm
온라인 검증 (bsradm verify)은 디스크 블록 (즉, 해시 값)의 체크섬을 계산하고 비교하여 서로 다른지를 감지합니다. verify-alg 매개 변수는 이러한 체크섬에 사용할 알고리즘을 결정합니다. 온라인 검증을 사용하기 전에 커널이 지원하는 보안 해시 알고리즘 중 하나로 설정해야합니다. /proc/ crypto에 나열된 shash 알고리즘을 참조하십시오. 운영 부하가 적은 시점에 정기적으로(예 : 한 달에 한 번) 온라인 확인을 예약하는 것이 좋습니다.
...