개요
bsr은 로컬 노드의 데이터를 클러스터의 모든 다른 노드로 복제하는 블록 장치를 구현합니다. 여기서 실제 데이터 및 이와 관련한 메타 데이터는 각 클러스터 노드의 "일반"블록 장치 볼륨에 (일반적으로 외부메타일 경우)개별적으로 저장됩니다. 복제 블록 장치는 기본적으로 /dev/drbd<minor>형식으로 명명하거나 또는 장치의 심볼릭 링크(레터)로 직접 지정해야 합니다. 리소스 당 하나 이상의 장치들이 그룹화 되고 각각의 장치들을 병렬적으로 복제합니다. 리소스 내부의 장치를 volume으로 규정하며 두 개 이상의 클러스터 노드간에 리소스를 복제 할 수 있습니다. 클러스터 노드 간 연결은 지점 간 링크이며 TCP 프로토콜을 사용합니다. bsr은 구성파일을 이해하고 처리하는 기본 구성요소 bsradm 과 저수준의 구성요소 bsrsetup, bsrmeta, bsrcon으로 구성됩니다. 기본적인 bsr 구성은 /etc/drbd.conf 및 여기에 포함 된 추가 파일들(일반적으로 global_common.conf 및 /etc 경로의 안에 있는 모든 * .res 파일)로 구성됩니다. 보통 각 리소스를 etc/bsr.d/. 경로에서 별도의 * .res 파일들로 정의하는 것이 유용합니다. 구성 파일은 각 클러스터 노드가 전체 클러스터 구성의 동일한 사본을 포함하도록 설계되었습니다. 그러나 때로는 노드 별로 각기 다른 구성파일의 내용을 가져야 할 수도 있어서 절대적인 것은 아닙니다.
resource r0 { net { protocol C; } disk { resync-rate 10M; c-plan-ahead 0; } on alice { volume 0 { device e minor 2; disk e; meta-disk f; } address 10.1.1.31:7789; node-id 0; } on bob { volume 0 { disk e; meta-disk f; } address 10.1.1.32:7789; node-id 1; } } |
이 예에서는 e 레터의 볼륨을 단일 복제 장치가 포함 된 리소스 r0로 정의합니다. 이 리소스는 각각 IPv4 주소 10.1.1.31 및 10.1.1.32와 노드 식별자 0 및 1을 가진 호스트 alice 및 bob 간의 복제를 수행합니다. 실제 데이터는 e 볼륨이지만 및 메타 데이터는 f 볼륨에 저장됩니다. 호스트 간 연결에는 프로토콜 C가 사용됩니다.
파일 포맷
구성 파일은 섹션 유형에 따라 다른 섹션 및 매개 변수를 포함하는 섹션으로 구성됩니다. 각 섹션은 하나 이상의 키워드, 때로는 섹션 이름, 여는 중괄호 ( "{"), 섹션의 내용 및 닫는 중괄호 ( "}")로 구성됩니다. 섹션 내의 매개 변수는 키워드와 하나 이상의 키워드 또는 값 및 세미콜론 ( ";")으로 구성됩니다. 일부 매개 변수 값에는 일반 숫자를 지정할 때 적용되는 기본 스케일이 있습니다 (예 : Kilo). 이러한 기본 스케일은 접미사 (예 : M의 경우 Mega)를 사용하여 재정의 할 수 있습니다. 공통 접미사는 K = 2 ^ 10 = 1024, M = 1024 K 및 G = 1024 M이 지원됩니다. 주석은 해시 기호 ( "#")로 시작하여 해당 줄 끝까지 기술할 수 있습니다. 또한, 모든 섹션에 키워드 skip을 접두어로 붙여서 섹션과 하위 섹션을 무시할 수 있습니다. 추가 파일은 include 파일 패턴 명령문에 포함될 수 있습니다. include 문은 섹션 외부에서만 허용됩니다.
아래에 기술한 섹션이 정의됩니다. 들여 쓰기된 섹션이 하위 섹션임을 표시합니다.
common [disk] [handlers] [net] [options] [startup] global resource connection path net volume peer-device-options [peer-device-options] connection-mesh net [disk] floating handlers [net] on volume disk [disk] options stacked-on-top-of startup |
괄호 안의 섹션은 구성의 다른 부분에 영향을 줍니다. common 섹션의 내용은 모든 리소스에 적용됩니다. resource 또는 resource 섹션의 disk 섹션은 해당 자원의 모든 볼륨에 적용되며 resource 섹션의 network 섹션은 해당 자원의 모든 connection에 적용됩니다. 이를 통해 각 자원, 연결 또는 볼륨에 대해 동일한 옵션을 반복하지 않아도됩니다. 리소스, 연결, 볼륨 또는 볼륨 섹션에서 보다 구체적인 옵션을 재정의 할 수 있습니다. peer-device 옵션은 resync-rate, c-plan-ahead, c-delay-target, c-fill-target, c-max-rate 및 c-min-rate 로 정의되며 이전 버전과의 호환성을 위해 모든 disk 섹션에서도 지정할 수 있습니다. 그것들은 모든 관련 연결로 상속됩니다. connection 섹션에 부여 된 경우 해당 connection의 모든 볼륨에 상속됩니다. "peer-device-options"섹션은 "disk"키워드로 시작됩니다.
섹션
common
이 섹션에는 각 disk, handler, network, options 및 startup 섹션이 포함될 수 있습니다. 모든 리소스들은 이 섹션의 매개 변수를 기본값으로 상속합니다.
connection [name]
두 호스트 간의 연결을 정의합니다. 이 섹션에는 두 개의 호스트 매개 변수 또는 여러 경로 섹션이 포함되어야합니다. 선택적으로 사용할 수 있는 "Name"은 시스템 로그 및 기타 다른 메시지들의 연결을 나타내는 데 사용됩니다. 이름을 지정하지 않으면 피어의 호스트 이름이 대신 사용됩니다.
path
두 호스트 간의 path를 정의합니다. 이 섹션에는 두 개의 호스트 매개 변수가 포함되어야합니다.
connection-mesh
여러 호스트들 간의 mesh 연결을 정의합니다. 이 섹션에는 호스트 이름을 인수로 갖는 "hosts"매개 변수가 포함되어야합니다. 이 섹션은 동일한 네트워크 옵션을 공유하는 많은 연결을 손쉽게 정의하는 방법입니다.
disk
볼륨의 매개 변수를 정의합니다. 이 섹션의 모든 매개 변수는 선택 사항입니다.
floating [address-family] addr:port
on 섹션과 마찬가지로 호스트 이름 대신 네트워크 주소가 floating 섹션과 일치하는지 확인합니다. 이 섹션의 node-id 매개 변수가 필요합니다. 주소 매개 변수가 제공되지 않으면 기본적으로 피어에 대한 연결이 생성되지 않습니다. device, disk 및 meta-disk 매개 변수는 반드시 이 섹션에서 정의하거나 상위로부터 상속해야 합니다.
global
일부 전역 매개 변수를 정의합니다. 이 섹션의 모든 매개 변수는 선택 사항입니다. 구성에서 하나의 global 섹션만 허용됩니다.
handlers
특정 이벤트가 발생할 때 호출 될 핸들러를 정의합니다. 커널은 핸들러의 첫 번째 명령 줄 인수에서 리소스 이름을 전달하고 이벤트 문맥에 따라 다음 환경 변수를 설정합니다.
특정 device와 관련된 이벤트의 경우: 장치의 부 번호는 BSR_MINOR, 장치의 볼륨 번호는 BSR_VOLUME 에 있습니다.
특정 peer의 특정 device와 관련된 이벤트의 경우: BSR_MY_ADDRESS, BSR_MY_AF, BSR_PEER_ADDRESS 및 BSR_PEER_AF에 connection 엔드 포인트가 있습니다; BSR_MINOR에 있는 장치의 로컬 부 번호 및 BSR_VOLUME에 장치의 볼륨 번호가 있습니다.
특정 connection과 관련된 이벤트의 경우: BSR_MY_ADDRESS, BSR_MY_AF, BSR_PEER_ADDRESS 및, BSR_PEER_AF에 connection 엔드 포인트; 그리고 해당 connection에 대해 정의된 각 device의 장치 부 번호가 DRBD_MINOR_volume-number에 있습니다.
장치를 식별하는 이벤트의 경우 하위 장치가 연결되어 있으면 하위 장치의 장치 이름이 BSR_BACKING_DEV (또는 BSR_BACKING_DEV_volume-number)로 전달됩니다.
이 섹션의 모든 매개 변수는 선택 사항입니다. 각 이벤트에 대해 단일 핸들러만 정의 할 수 있습니다. 핸들러가 정의되어 있지 않으면 아무 일도 일어나지 않습니다.
net
연결 매개 변수를 정의합니다. 이 섹션의 모든 매개 변수는 선택 사항입니다.
on host-name [...]
특정 호스트 또는 호스트 세트에서 리소스의 특성을 정의하십시오. 예를 들어, IP 주소 failover 설정에서 둘 이상의 호스트 이름을 지정하는 경우에 의미가 있습니다. host-name 인수는 OS에 설정된 호스트 이름 (uname -n)과 일치해야합니다. 일반적으로 하나 이상의 볼륨 섹션을 포함하거나 상속합니다. 이 섹션에서 node-id 및 address 매개 변수를 정의해야합니다. device, disk 및 meta-disk 매개 변수는이 섹션에서 반드시 정의하거나 상속해야합니다. 일반적인 구성 파일에서는 각 리소스에 대한 둘 이상의 on 섹션이 있습니다. floating 섹션의 내용을 참고하세요
options
리소스에 대한 매개 변수를 정의합니다. 이 섹션의 모든 매개 변수는 선택 사항입니다.
resource name
리소스를 정의합니다. 일반적으로 두 개 이상의 섹션과 하나 이상의 connection 섹션이 있습니다.
stacked-on-top-of resource
Used instead of an on section for configuring a stacked resource with three to four nodes. Starting with DRBD 9, stacking is deprecated. It is advised to use resources which are replicated among more than two nodes instead.
startup
The parameters in this section determine the behavior of a resource at startup time.
volume volume-number
Define a volume within a resource. The volume numbers in the various volume sections of a resource define which devices on which hosts form a replicated device.
Section connection Parameters
host name [address [address-family] address] [port port-number]
Defines an endpoint for a connection. Each host statement refers to an on section in a resource. If a port number is defined, this endpoint will use the specified port instead of the port defined in the on section. Each connection section must contain exactly two host parameters. Instead of two host parameters the connection may contain multiple path sections.
Section path Parameters
host name [address [address-family] address] [port port-number]
Defines an endpoint for a connection. Each host statement refers to an on section in a resource. If a port number is defined, this endpoint will use the specified port instead of the port defined in the on section. Each path section must contain exactly two host parameters.
Section connection-mesh Parameters
hosts name...
Defines all nodes of a mesh. Each name refers to an on section in a resource. The port that is defined in the on section will be used.
Section disk Parameters
al-extents extents
DRBD automatically maintains a "hot" or "active" disk area likely to be written to again soon based on the recent write activity. The "active" disk area can be written to immediately, while "inactive" disk areas must be "activated" first, which requires a meta-data write. We also refer to this active disk area as the "activity log". The activity log saves meta-data writes, but the whole log must be resynced upon recovery of a failed node. The size of the activity log is a major factor of how long a resync will take and how fast a replicated disk will become consistent after a crash. The activity log consists of a number of 4-Megabyte segments; the al-extents parameter determines how many of those segments can be active at the same time. The default value for al-extents is 1237, with a minimum of 7 and a maximum of 65536. Note that the effective maximum may be smaller, depending on how you created the device meta data, see also drbdmeta(8) The effective maximum is 919 * (available on-disk activity-log ring-buffer area/4kB -1), the default 32kB ring-buffer effects a maximum of 6433 (covers more than 25 GiB of data) We recommend to keep this well within the amount your backend storage and replication link are able to resync inside of about 5 minutes.
al-updates {yes | no}
With this parameter, the activity log can be turned off entirely (see the al-extents parameter). This will speed up writes because fewer meta-data writes will be necessary, but the entire device needs to be resynchronized opon recovery of a failed primary node. The default value for al-updates is yes.
disk-barrier,
disk-flushes,
disk-drain
DRBD has three methods of handling the ordering of dependent write requests:disk-barrierUse disk barriers to make sure that requests are written to disk in the right order. Barriers ensure that all requests submitted before a barrier make it to the disk before any requests submitted after the barrier. This is implemented using 'tagged command queuing' on SCSI devices and 'native command queuing' on SATA devices. Only some devices and device stacks support this method. The device mapper (LVM) only supports barriers in some configurations. Note that on systems which do not support disk barriers, enabling this option can lead to data loss or corruption. Until DRBD 8.4.1, disk-barrier was turned on if the I/O stack below DRBD did support barriers. Kernels since linux-2.6.36 (or 2.6.32 RHEL6) no longer allow to detect if barriers are supported. Since drbd-8.4.2, this option is off by default and needs to be enabled explicitly.disk-flushesUse disk flushes between dependent write requests, also referred to as 'force unit access' by drive vendors. This forces all data to disk. This option is enabled by default.disk-drainWait for the request queue to "drain" (that is, wait for the requests to finish) before submitting a dependent write request. This method requires that requests are stable on disk when they finish. Before DRBD 8.0.9, this was the only method implemented. This option is enabled by default. Do not disable in production environments. From these three methods, drbd will use the first that is enabled and supported by the backing storage device. If all three of these options are turned off, DRBD will submit write requests without bothering about dependencies. Depending on the I/O stack, write requests can be reordered, and they can be submitted in a different order on different cluster nodes. This can result in data loss or corruption. Therefore, turning off all three methods of controlling write ordering is strongly discouraged. A general guideline for configuring write ordering is to use disk barriers or disk flushes when using ordinary disks (or an ordinary disk array) with a volatile write cache. On storage without cache or with a battery backed write cache, disk draining can be a reasonable choice.
disk-timeout
If the lower-level device on which a DRBD device stores its data does not finish an I/O request within the defined disk-timeout, DRBD treats this as a failure. The lower-level device is detached, and the device's disk state advances to Diskless. If DRBD is connected to one or more peers, the failed request is passed on to one of them. This option is dangerous and may lead to kernel panic! "Aborting" requests, or force-detaching the disk, is intended for completely blocked/hung local backing devices which do no longer complete requests at all, not even do error completions. In this situation, usually a hard-reset and failover is the only way out. By "aborting", basically faking a local error-completion, we allow for a more graceful swichover by cleanly migrating services. Still the affected node has to be rebooted "soon". By completing these requests, we allow the upper layers to re-use the associated data pages. If later the local backing device "recovers", and now DMAs some data from disk into the original request pages, in the best case it will just put random data into unused pages; but typically it will corrupt meanwhile completely unrelated data, causing all sorts of damage. Which means delayed successful completion, especially for READ requests, is a reason to panic(). We assume that a delayed *error* completion is OK, though we still will complain noisily about it. The default value of disk-timeout is 0, which stands for an infinite timeout. Timeouts are specified in units of 0.1 seconds. This option is available since DRBD 8.3.12.
md-flushes
Enable disk flushes and disk barriers on the meta-data device. This option is enabled by default. See the disk-flushes parameter.
on-io-error handler
Configure how DRBD reacts to I/O errors on a lower-level device. The following policies are defined:pass_onChange the disk status to Inconsistent, mark the failed block as inconsistent in the bitmap, and retry the I/O operation on a remote cluster node.call-local-io-errorCall the local-io-error handler (see the handlers section).detachDetach the lower-level device and continue in diskless mode.
read-balancing policy
Distribute read requests among cluster nodes as defined by policy. The supported policies are prefer-local (the default), prefer-remote, round-robin, least-pending, when-congested-remote, 32K-striping, 64K-striping, 128K-striping, 256K-striping, 512K-striping and 1M-striping. This option is available since DRBD 8.4.1.
resync-after res-name/volume
Define that a device should only resynchronize after the specified other device. By default, no order between devices is defined, and all devices will resynchronize in parallel. Depending on the configuration of the lower-level devices, and the available network and disk bandwidth, this can slow down the overall resync process. This option can be used to form a chain or tree of dependencies among devices.
rs-discard-granularity byte
When rs-discard-granularity is set to a non zero, positive value then DRBD tries to do a resync operation in requests of this size. In case such a block contains only zero bytes on the sync source node, the sync target node will issue a discard/trim/unmap command for the area. The value is constrained by the discard granularity of the backing block device. In case rs-discard-granularity is not a multiplier of the discard granularity of the backing block device DRBD rounds it up. The feature only gets active if the backing block device reads back zeroes after a discard command. The default value of is 0. This option is available since 8.4.7.
discard-zeroes-if-aligned {yes | no}
There are several aspects to discard/trim/unmap support on linux block devices. Even if discard is supported in general, it may fail silently, or may partially ignore discard requests. Devices also announce whether reading from unmapped blocks returns defined data (usually zeroes), or undefined data (possibly old data, possibly garbage). If on different nodes, DRBD is backed by devices with differing discard characteristics, discards may lead to data divergence (old data or garbage left over on one backend, zeroes due to unmapped areas on the other backend). Online verify would now potentially report tons of spurious differences. While probably harmless for most use cases (fstrim on a file system), DRBD cannot have that. To play safe, we have to disable discard support, if our local backend (on a Primary) does not support "discard_zeroes_data=true". We also have to translate discards to explicit zero-out on the receiving side, unless the receiving side (Secondary) supports "discard_zeroes_data=true", thereby allocating areas what were supposed to be unmapped. There are some devices (notably the LVM/DM thin provisioning) that are capable of discard, but announce discard_zeroes_data=false. In the case of DM-thin, discards aligned to the chunk size will be unmapped, and reading from unmapped sectors will return zeroes. However, unaligned partial head or tail areas of discard requests will be silently ignored. If we now add a helper to explicitly zero-out these unaligned partial areas, while passing on the discard of the aligned full chunks, we effectively achieve discard_zeroes_data=true on such devices. Setting discard-zeroes-if-aligned to yes will allow DRBD to use discards, and to announce discard_zeroes_data=true, even on backends that announce discard_zeroes_data=false. Setting discard-zeroes-if-aligned to no will cause DRBD to always fall-back to zero-out on the receiving side, and to not even announce discard capabilities on the Primary, if the respective backend announces discard_zeroes_data=false. We used to ignore the discard_zeroes_data setting completely. To not break established and expected behaviour, and suddenly cause fstrim on thin-provisioned LVs to run out-of-space instead of freeing up space, the default value is yes. This option is available since 8.4.7.
Section peer-device-options Parameters
Please note that you open the section with the disk keyword.c-delay-target delay_target,
c-fill-target fill_target,
c-max-rate max_rate,
c-plan-ahead plan_time
Dynamically control the resync speed. This mechanism is enabled by setting the c-plan-ahead parameter to a positive value. The goal is to either fill the buffers along the data path with a defined amount of data if c-fill-target is defined, or to have a defined delay along the path if c-delay-target is defined. The maximum bandwidth is limited by the c-max-rate parameter. The c-plan-ahead parameter defines how fast drbd adapts to changes in the resync speed. It should be set to five times the network round-trip time or more. Common values for c-fill-target for "normal" data paths range from 4K to 100K. If drbd-proxy is used, it is advised to use c-delay-target instead of c-fill-target. The c-delay-target parameter is used if the c-fill-target parameter is undefined or set to 0. The c-delay-target parameter should be set to five times the network round-trip time or more. The c-max-rate option should be set to either the bandwidth available between the DRBD-hosts and the machines hosting DRBD-proxy, or to the available disk bandwidth. The default values of these parameters are: c-plan-ahead = 20 (in units of 0.1 seconds), c-fill-target = 0 (in units of sectors), c-delay-target = 1 (in units of 0.1 seconds), and c-max-rate = 102400 (in units of KiB/s). Dynamic resync speed control is available since DRBD 8.3.9.
c-min-rate min_rate
A node which is primary and sync-source has to schedule application I/O requests and resync I/O requests. The c-min-rate parameter limits how much bandwidth is available for resync I/O; the remaining bandwidth is used for application I/O. A c-min-rate value of 0 means that there is no limit on the resync I/O bandwidth. This can slow down application I/O significantly. Use a value of 1 (1 KiB/s) for the lowest possible resync rate. The default value of c-min-rate is 4096, in units of KiB/s.
resync-rate rate
Define how much bandwidth DRBD may use for resynchronizing. DRBD allows "normal" application I/O even during a resync. If the resync takes up too much bandwidth, application I/O can become very slow. This parameter allows to avoid that. Please note this is option only works when the dynamic resync controller is disabled.
Section global Parameters
dialog-refresh time
The DRBD init script can be used to configure and start DRBD devices, which can involve waiting for other cluster nodes. While waiting, the init script shows the remaining waiting time. The dialog-refresh defines the number of seconds between updates of that countdown. The default value is 1; a value of 0 turns off the countdown.
disable-ip-verification
Normally, DRBD verifies that the IP addresses in the configuration match the host names. Use the disable-ip-verification parameter to disable these checks.
usage-count {yes | no | ask}
A explained on DRBD's Online Usage Counter[2] web page, DRBD includes a mechanism for anonymously counting how many installations are using which versions of DRBD. The results are available on the web page for anyone to see. This parameter defines if a cluster node participates in the usage counter; the supported values are yes, no, and ask (ask the user, the default). We would like to ask users to participate in the online usage counter as this provides us valuable feedback for steering the development of DRBD.
udev-always-use-vnr
When udev asks drbdadm for a list of device related symlinks, drbdadm would suggest symlinks with differing naming conventions, depending on whether the resource has explicit volume VNR { } definitions, or only one single volume with the implicit volume number 0:
# implicit single volume without "volume 0 {}" block DEVICE=drbd<minor> SYMLINK_BY_RES=drbd/by-res/<resource-name> SYMLINK_BY_DISK=drbd/by-disk/<backing-disk-name> # explicit volume definition: volume VNR { } DEVICE=drbd<minor> SYMLINK_BY_RES=drbd/by-res/<resource-name>/VNR SYMLINK_BY_DISK=drbd/by-disk/<backing-disk-name>
If you define this parameter in the global section, drbdadm will always add the .../VNR part, and will not care for whether the volume definition was implicit or explicit. For legacy backward compatibility, this is off by default, but we do recommend to enable it.
Section handlers Parameters
after-resync-target cmd
Called on a resync target when a node state changes from Inconsistent to Consistent when a resync finishes. This handler can be used for removing the snapshot created in the before-resync-target handler.
before-resync-target cmd
Called on a resync target before a resync begins. This handler can be used for creating a snapshot of the lower-level device for the duration of the resync: if the resync source becomes unavailable during a resync, reverting to the snapshot can restore a consistent state.
before-resync-source cmd
Called on a resync source before a resync begins.
out-of-sync cmd
Called on all nodes after a verify finishes and out-of-sync blocks were found. This handler is mainly used for monitoring purposes. An example would be to call a script that sends an alert SMS.
quorum-lost cmd
Called on a Primary that lost quorum. This handler is usually used to reboot the node if it is not possible to restart the application that uses the storage on top of DRBD.
fence-peer cmd
Called when a node should fence a resource on a particular peer. The handler should not use the same communication path that DRBD uses for talking to the peer.
unfence-peer cmd
Called when a node should remove fencing constraints from other nodes.
initial-split-brain cmd
Called when DRBD connects to a peer and detects that the peer is in a split-brain state with the local node. This handler is also called for split-brain scenarios which will be resolved automatically.
local-io-error cmd
Called when an I/O error occurs on a lower-level device.
pri-lost cmd
The local node is currently primary, but DRBD believes that it should become a sync target. The node should give up its primary role.
pri-lost-after-sb cmd
The local node is currently primary, but it has lost the after-split-brain auto recovery procedure. The node should be abandoned.
pri-on-incon-degr cmd
The local node is primary, and neither the local lower-level device nor a lower-level device on a peer is up to date. (The primary has no device to read from or to write to.)
split-brain cmd
DRBD has detected a split-brain situation which could not be resolved automatically. Manual recovery is necessary. This handler can be used to call for administrator attention.
Section net Parameters
after-sb-0pri policy
Define how to react if a split-brain scenario is detected and none of the two nodes is in primary role. (We detect split-brain scenarios when two nodes connect; split-brain decisions are always between two nodes.) The defined policies are:disconnectNo automatic resynchronization; simply disconnect.discard-younger-primary, discard-older-primaryResynchronize from the node which became primary first ( discard-younger-primary) or last (discard-older-primary). If both nodes became primary independently, the discard-least-changes policy is used.discard-zero-changesIf only one of the nodes wrote data since the split brain situation was detected, resynchronize from this node to the other. If both nodes wrote data, disconnect.discard-least-changesResynchronize from the node with more modified blocks.discard-node-nodenameAlways resynchronize to the named node.
after-sb-1pri policy
Define how to react if a split-brain scenario is detected, with one node in primary role and one node in secondary role. (We detect split-brain scenarios when two nodes connect, so split-brain decisions are always among two nodes.) The defined policies are:disconnectNo automatic resynchronization, simply disconnect.consensusDiscard the data on the secondary node if the after-sb-0pri algorithm would also discard the data on the secondary node. Otherwise, disconnect.violently-as0pAlways take the decision of the after-sb-0pri algorithm, even if it causes an erratic change of the primary's view of the data. This is only useful if a single-node file system (i.e., not OCFS2 or GFS) with the allow-two-primaries flag is used. This option can cause the primary node to crash, and should not be used.discard-secondaryDiscard the data on the secondary node.call-pri-lost-after-sbAlways take the decision of the after-sb-0pri algorithm. If the decision is to discard the data on the primary node, call the pri-lost-after-sb handler on the primary node.
after-sb-2pri policy
Define how to react if a split-brain scenario is detected and both nodes are in primary role. (We detect split-brain scenarios when two nodes connect, so split-brain decisions are always among two nodes.) The defined policies are:disconnectNo automatic resynchronization, simply disconnect.violently-as0pSee the violently-as0p policy for after-sb-1pri.call-pri-lost-after-sbCall the pri-lost-after-sb helper program on one of the machines unless that machine can demote to secondary. The helper program is expected to reboot the machine, which brings the node into a secondary role. Which machine runs the helper program is determined by the after-sb-0pri strategy.
allow-two-primaries
The most common way to configure DRBD devices is to allow only one node to be primary (and thus writable) at a time. In some scenarios it is preferable to allow two nodes to be primary at once; a mechanism outside of DRBD then must make sure that writes to the shared, replicated device happen in a coordinated way. This can be done with a shared-storage cluster file system like OCFS2 and GFS, or with virtual machine images and a virtual machine manager that can migrate virtual machines between physical machines. The allow-two-primaries parameter tells DRBD to allow two nodes to be primary at the same time. Never enable this option when using a non-distributed file system; otherwise, data corruption and node crashes will result!
always-asbp
Normally the automatic after-split-brain policies are only used if current states of the UUIDs do not indicate the presence of a third node. With this option you request that the automatic after-split-brain policies are used as long as the data sets of the nodes are somehow related. This might cause a full sync, if the UUIDs indicate the presence of a third node. (Or double faults led to strange UUID sets.)
connect-int time
As soon as a connection between two nodes is configured with drbdsetup connect, DRBD immediately tries to establish the connection. If this fails, DRBD waits for connect-int seconds and then repeats. The default value of connect-int is 10 seconds.
cram-hmac-alg hash-algorithm
Configure the hash-based message authentication code (HMAC) or secure hash algorithm to use for peer authentication. The kernel supports a number of different algorithms, some of which may be loadable as kernel modules. See the shash algorithms listed in /proc/crypto. By default, cram-hmac-alg is unset. Peer authentication also requires a shared-secret to be configured.
csums-alg hash-algorithm
Normally, when two nodes resynchronize, the sync target requests a piece of out-of-sync data from the sync source, and the sync source sends the data. With many usage patterns, a significant number of those blocks will actually be identical. When a csums-alg algorithm is specified, when requesting a piece of out-of-sync data, the sync target also sends along a hash of the data it currently has. The sync source compares this hash with its own version of the data. It sends the sync target the new data if the hashes differ, and tells it that the data are the same otherwise. This reduces the network bandwidth required, at the cost of higher cpu utilization and possibly increased I/O on the sync target. The csums-alg can be set to one of the secure hash algorithms supported by the kernel; see the shash algorithms listed in /proc/crypto. By default, csums-alg is unset.
csums-after-crash-only
Enabling this option (and csums-alg, above) makes it possible to use the checksum based resync only for the first resync after primary crash, but not for later "network hickups". In most cases, block that are marked as need-to-be-resynced are in fact changed, so calculating checksums, and both reading and writing the blocks on the resync target is all effective overhead. The advantage of checksum based resync is mostly after primary crash recovery, where the recovery marked larger areas (those covered by the activity log) as need-to-be-resynced, just in case. Introduced in 8.4.5.
data-integrity-alg alg
DRBD normally relies on the data integrity checks built into the TCP/IP protocol, but if a data integrity algorithm is configured, it will additionally use this algorithm to make sure that the data received over the network match what the sender has sent. If a data integrity error is detected, DRBD will close the network connection and reconnect, which will trigger a resync. The data-integrity-alg can be set to one of the secure hash algorithms supported by the kernel; see the shash algorithms listed in /proc/crypto. By default, this mechanism is turned off. Because of the CPU overhead involved, we recommend not to use this option in production environments. Also see the notes on data integrity below.
fencing fencing_policy
Fencing is a preventive measure to avoid situations where both nodes are primary and disconnected. This is also known as a split-brain situation. DRBD supports the following fencing policies:dont-careNo fencing actions are taken. This is the default policy.resource-onlyIf a node becomes a disconnected primary, it tries to fence the peer. This is done by calling the fence-peer handler. The handler is supposed to reach the peer over an alternative communication path and call ' drbdadm outdate minor' there.resource-and-stonithIf a node becomes a disconnected primary, it freezes all its IO operations and calls its fence-peer handler. The fence-peer handler is supposed to reach the peer over an alternative communication path and call ' drbdadm outdate minor' there. In case it cannot do that, it should stonith the peer. IO is resumed as soon as the situation is resolved. In case the fence-peer handler fails, I/O can be resumed manually with ' drbdadm resume-io'.
ko-count number
If a secondary node fails to complete a write request in ko-count times the timeout parameter, it is excluded from the cluster. The primary node then sets the connection to this secondary node to Standalone. To disable this feature, you should explicitly set it to 0; defaults may change between versions.
max-buffers number
Limits the memory usage per DRBD minor device on the receiving side, or for internal buffers during resync or online-verify. Unit is PAGE_SIZE, which is 4 KiB on most systems. The minimum possible setting is hard coded to 32 (=128 KiB). These buffers are used to hold data blocks while they are written to/read from disk. To avoid possible distributed deadlocks on congestion, this setting is used as a throttle threshold rather than a hard limit. Once more than max-buffers pages are in use, further allocation from this pool is throttled. You want to increase max-buffers if you cannot saturate the IO backend on the receiving side.
max-epoch-size number
Define the maximum number of write requests DRBD may issue before issuing a write barrier. The default value is 2048, with a minimum of 1 and a maximum of 20000. Setting this parameter to a value below 10 is likely to decrease performance.
on-congestion policy,
congestion-fill threshold,
congestion-extents threshold
By default, DRBD blocks when the TCP send queue is full. This prevents applications from generating further write requests until more buffer space becomes available again. When DRBD is used together with DRBD-proxy, it can be better to use the pull-ahead on-congestion policy, which can switch DRBD into ahead/behind mode before the send queue is full. DRBD then records the differences between itself and the peer in its bitmap, but it no longer replicates them to the peer. When enough buffer space becomes available again, the node resynchronizes with the peer and switches back to normal replication. This has the advantage of not blocking application I/O even when the queues fill up, and the disadvantage that peer nodes can fall behind much further. Also, while resynchronizing, peer nodes will become inconsistent. The available congestion policies are block (the default) and pull-ahead. The congestion-fill parameter defines how much data is allowed to be "in flight" in this connection. The default value is 0, which disables this mechanism of congestion control, with a maximum of 10 GiBytes. The congestion-extents parameter defines how many bitmap extents may be active before switching into ahead/behind mode, with the same default and limits as the al-extents parameter. The congestion-extents parameter is effective only when set to a value smaller than al-extents. Ahead/behind mode is available since DRBD 8.3.10.
ping-int interval
When the TCP/IP connection to a peer is idle for more than ping-int seconds, DRBD will send a keep-alive packet to make sure that a failed peer or network connection is detected reasonably soon. The default value is 10 seconds, with a minimum of 1 and a maximum of 120 seconds. The unit is seconds.
ping-timeout timeout
Define the timeout for replies to keep-alive packets. If the peer does not reply within ping-timeout, DRBD will close and try to reestablish the connection. The default value is 0.5 seconds, with a minimum of 0.1 seconds and a maximum of 3 seconds. The unit is tenths of a second.
socket-check-timeout timeout
In setups involving a DRBD-proxy and connections that experience a lot of buffer-bloat it might be necessary to set ping-timeout to an unusual high value. By default DRBD uses the same value to wait if a newly established TCP-connection is stable. Since the DRBD-proxy is usually located in the same data center such a long wait time may hinder DRBD's connect process. In such setups socket-check-timeout should be set to at least to the round trip time between DRBD and DRBD-proxy. I.e. in most cases to 1. The default unit is tenths of a second, the default value is 0 (which causes DRBD to use the value of ping-timeout instead). Introduced in 8.4.5.
protocol name
Use the specified protocol on this connection. The supported protocols are:AWrites to the DRBD device complete as soon as they have reached the local disk and the TCP/IP send buffer.BWrites to the DRBD device complete as soon as they have reached the local disk, and all peers have acknowledged the receipt of the write requests.CWrites to the DRBD device complete as soon as they have reached the local and all remote disks.
rcvbuf-size size
Configure the size of the TCP/IP receive buffer. A value of 0 (the default) causes the buffer size to adjust dynamically. This parameter usually does not need to be set, but it can be set to a value up to 10 MiB. The default unit is bytes.
rr-conflict policy
This option helps to solve the cases when the outcome of the resync decision is incompatible with the current role assignment in the cluster. The defined policies are:disconnectNo automatic resynchronization, simply disconnect.violentlyResync to the primary node is allowed, violating the assumption that data on a block device are stable for one of the nodes. Do not use this option, it is dangerous.call-pri-lostCall the pri-lost handler on one of the machines. The handler is expected to reboot the machine, which puts it into secondary role.
shared-secret secret
Configure the shared secret used for peer authentication. The secret is a string of up to 64 characters. Peer authentication also requires the cram-hmac-alg parameter to be set.
sndbuf-size size
Configure the size of the TCP/IP send buffer. Since DRBD 8.0.13 / 8.2.7, a value of 0 (the default) causes the buffer size to adjust dynamically. Values below 32 KiB are harmful to the throughput on this connection. Large buffer sizes can be useful especially when protocol A is used over high-latency networks; the maximum value supported is 10 MiB.
tcp-cork
By default, DRBD uses the TCP_CORK socket option to prevent the kernel from sending partial messages; this results in fewer and bigger packets on the network. Some network stacks can perform worse with this optimization. On these, the tcp-cork parameter can be used to turn this optimization off.
timeout time
Define the timeout for replies over the network: if a peer node does not send an expected reply within the specified timeout, it is considered dead and the TCP/IP connection is closed. The timeout value must be lower than connect-int and lower than ping-int. The default is 6 seconds; the value is specified in tenths of a second.
use-rle
Each replicated device on a cluster node has a separate bitmap for each of its peer devices. The bitmaps are used for tracking the differences between the local and peer device: depending on the cluster state, a disk range can be marked as different from the peer in the device's bitmap, in the peer device's bitmap, or in both bitmaps. When two cluster nodes connect, they exchange each other's bitmaps, and they each compute the union of the local and peer bitmap to determine the overall differences. Bitmaps of very large devices are also relatively large, but they usually compress very well using run-length encoding. This can save time and bandwidth for the bitmap transfers. The use-rle parameter determines if run-length encoding should be used. It is on by default since DRBD 8.4.0.
verify-alg hash-algorithm
Online verification (drbdadm verify) computes and compares checksums of disk blocks (i.e., hash values) in order to detect if they differ. The verify-alg parameter determines which algorithm to use for these checksums. It must be set to one of the secure hash algorithms supported by the kernel before online verify can be used; see the shash algorithms listed in /proc/crypto. We recommend to schedule online verifications regularly during low-load periods, for example once a month. Also see the notes on data integrity below.
Section on Parameters
address [address-family] address: port
Defines the address family, address, and port of a connection endpoint. The address families ipv4, ipv6, ssocks (Dolphin Interconnect Solutions' "super sockets"), sdp (Infiniband Sockets Direct Protocol), and sci are supported ( sci is an alias for ssocks). If no address family is specified, ipv4 is assumed. For all address families except ipv6, the address is specified in IPV4 address notation (for example, 1.2.3.4). For ipv6, the address is enclosed in brackets and uses IPv6 address notation (for example, [fd01:2345:6789:abcd::1]). The port is always specified as a decimal number from 1 to 65535. On each host, the port numbers must be unique for each address; ports cannot be shared.
node-id value
Defines the unique node identifier for a node in the cluster. Node identifiers are used to identify individual nodes in the network protocol, and to assign bitmap slots to nodes in the metadata. Node identifiers can only be reasssigned in a cluster when the cluster is down. It is essential that the node identifiers in the configuration and in the device metadata are changed consistently on all hosts. To change the metadata, dump the current state with drbdmeta dump-md, adjust the bitmap slot assignment, and update the metadata with drbdmeta restore-md. The node-id parameter exists since DRBD 9. Its value ranges from 0 to 16; there is no default.
Section options Parameters (Resource Options)
auto-promote bool-value
A resource must be promoted to primary role before any of its devices can be mounted or opened for writing. Before DRBD 9, this could only be done explicitly ("drbdadm primary"). Since DRBD 9, the auto-promote parameter allows to automatically promote a resource to primary role when one of its devices is mounted or opened for writing. As soon as all devices are unmounted or closed with no more remaining users, the role of the resource changes back to secondary. Automatic promotion only succeeds if the cluster state allows it (that is, if an explicit drbdadm primary command would succeed). Otherwise, mounting or opening the device fails as it already did before DRBD 9: the mount(2) system call fails with errno set to EROFS (Read-only file system); the open(2) system call fails with errno set to EMEDIUMTYPE (wrong medium type). Irrespective of the auto-promote parameter, if a device is promoted explicitly ( drbdadm primary), it also needs to be demoted explicitly (drbdadm secondary). The auto-promote parameter is available since DRBD 9.0.0, and defaults to yes.
cpu-mask cpu-mask
Set the cpu affinity mask for DRBD kernel threads. The cpu mask is specified as a hexadecimal number. The default value is 0, which lets the scheduler decide which kernel threads run on which CPUs. CPU numbers in cpu-mask which do not exist in the system are ignored.
on-no-data-accessible policy
Determine how to deal with I/O requests when the requested data is not available locally or remotely (for example, when all disks have failed). The defined policies are:io-errorSystem calls fail with errno set to EIO.suspend-ioThe resource suspends I/O. I/O can be resumed by (re)attaching the lower-level device, by connecting to a peer which has access to the data, or by forcing DRBD to resume I/O with drbdadm resume-io res. When no data is available, forcing I/O to resume will result in the same behavior as the io-error policy. This setting is available since DRBD 8.3.9; the default policy is io-error.
peer-ack-window value
On each node and for each device, DRBD maintains a bitmap of the differences between the local and remote data for each peer device. For example, in a three-node setup (nodes A, B, C) each with a single device, every node maintains one bitmap for each of its peers. When nodes receive write requests, they know how to update the bitmaps for the writing node, but not how to update the bitmaps between themselves. In this example, when a write request propagates from node A to B and C, nodes B and C know that they have the same data as node A, but not whether or not they both have the same data. As a remedy, the writing node occasionally sends peer-ack packets to its peers which tell them which state they are in relative to each other. The peer-ack-window parameter specifies how much data a primary node may send before sending a peer-ack packet. A low value causes increased network traffic; a high value causes less network traffic but higher memory consumption on secondary nodes and higher resync times between the secondary nodes after primary node failures. (Note: peer-ack packets may be sent due to other reasons as well, e.g. membership changes or expiry of the peer-ack-delay timer.) The default value for peer-ack-window is 2 MiB, the default unit is sectors. This option is available since 9.0.0.
peer-ack-delay expiry-time
If after the last finished write request no new write request gets issued for expiry-time, then a peer-ack packet is sent. If a new write request is issued before the timer expires, the timer gets reset to expiry-time. (Note: peer-ack packets may be sent due to other reasons as well, e.g. membership changes or the peer-ack-window option.) This parameter may influence resync behavior on remote nodes. Peer nodes need to wait until they receive an peer-ack for releasing a lock on an AL-extent. Resync operations between peers may need to wait for for these locks. The default value for peer-ack-delay is 100 milliseconds, the default unit is milliseconds. This option is available since 9.0.0.
quorum value
When activated, a cluster partition requires quorum in order to modify the replicated data set. That means a node in the cluster partition can only be promoted to primary if the cluster partition has quorum. Every node with a disk directly connected to the node that should be promoted counts. If a primary node should execute a write request, but the cluster partition has lost quorum, it will freeze IO or reject the write request with an error (depending on the on-no-quorum setting). Upon loosing quorum a primary always invokes the quorum-lost handler. The handler is intended for notification purposes, its return code is ignored. The option's value might be set to off, majority, all or a numeric value. If you set it to a numeric value, make sure that the value is greater than half of your number of nodes. Quorum is a mechanism to avoid data divergence, it might be used instead of fencing when there are more than two repicas. It defaults to off If all missing nodes are marked as outdated, a partition always has quorum, no matter how small it is. I.e. If you disconnect all secondary nodes gracefully a single primary continues to operate. In the moment a single secondary is lost, it has to be assumed that it forms a partition with all the missing outdated nodes. In case my partition might be smaller than the other, quorum is lost in this moment. In case you want to allow permanently diskless nodes to gain quorum it is recommendet to not use majority or all. It is recommended to specify an absolute number, since DBRD's heuristic to determine the complete number of diskfull nodes in the cluster is unreliable. The quorum implementation is available starting with the DRBD kernel driver version 9.0.7.
quorum-minimum-redundancy value
This option sets the minimal required number of nodes with an UpToDate disk to allow the partition to gain quorum. This is a different requirement than the plain quorum option expresses. The option's value might be set to off, majority, all or a numeric value. If you set it to a numeric value, make sure that the value is greater than half of your number of nodes. In case you want to allow permanently diskless nodes to gain quorum it is recommendet to not use majority or all. It is recommended to specify an absolute number, since DBRD's heuristic to determine the complete number of diskfull nodes in the cluster is unreliable. This option is available starting with the DRBD kernel driver version 9.0.10.
on-no-quorum {io-error | suspend-io}
By default DRBD freezes IO on a device, that lost quorum. By setting the on-no-quorum to io-error it completes all IO operations with an error if quorum ist lost. The on-no-quorum options is available starting with the DRBD kernel driver version 9.0.8.
Section startup Parameters
The parameters in this section define the behavior of DRBD at system startup time, in the DRBD init script. They have no effect once the system is up and running.degr-wfc-timeout timeout
Define how long to wait until all peers are connected in case the cluster consisted of a single node only when the system went down. This parameter is usually set to a value smaller than wfc-timeout. The assumption here is that peers which were unreachable before a reboot are less likely to be reachable after the reboot, so waiting is less likely to help. The timeout is specified in seconds. The default value is 0, which stands for an infinite timeout. Also see the wfc-timeout parameter.
outdated-wfc-timeout timeout
Define how long to wait until all peers are connected if all peers were outdated when the system went down. This parameter is usually set to a value smaller than wfc-timeout. The assumption here is that an outdated peer cannot have become primary in the meantime, so we don't need to wait for it as long as for a node which was alive before. The timeout is specified in seconds. The default value is 0, which stands for an infinite timeout. Also see the wfc-timeout parameter.
stacked-timeouts
On stacked devices, the wfc-timeout and degr-wfc-timeout parameters in the configuration are usually ignored, and both timeouts are set to twice the connect-int timeout. The stacked-timeouts parameter tells DRBD to use the wfc-timeout and degr-wfc-timeout parameters as defined in the configuration, even on stacked devices. Only use this parameter if the peer of the stacked resource is usually not available, or will not become primary. Incorrect use of this parameter can lead to unexpected split-brain scenarios.
wait-after-sb
This parameter causes DRBD to continue waiting in the init script even when a split-brain situation has been detected, and the nodes therefore refuse to connect to each other.
wfc-timeout timeout
Define how long the init script waits until all peers are connected. This can be useful in combination with a cluster manager which cannot manage DRBD resources: when the cluster manager starts, the DRBD resources will already be up and running. With a more capable cluster manager such as Pacemaker, it makes more sense to let the cluster manager control DRBD resources. The timeout is specified in seconds. The default value is 0, which stands for an infinite timeout. Also see the degr-wfc-timeout parameter.
Section volume Parameters
device /dev/drbdminor-number
Define the device name and minor number of a replicated block device. This is the device that applications are supposed to access; in most cases, the device is not used directly, but as a file system. This parameter is required and the standard device naming convention is assumed. In addition to this device, udev will create /dev/drbd/by-res/resource /volume and /dev/drbd/by-disk/lower-level-device symlinks to the device.
disk {[disk] | none}
Define the lower-level block device that DRBD will use for storing the actual data. While the replicated drbd device is configured, the lower-level device must not be used directly. Even read-only access with tools like dumpe2fs(8) and similar is not allowed. The keyword none specifies that no lower-level block device is configured; this also overrides inheritance of the lower-level device.
meta-disk internal,
meta-disk device,
meta-disk device [index]
Define where the metadata of a replicated block device resides: it can be internal, meaning that the lower-level device contains both the data and the metadata, or on a separate device. When the index form of this parameter is used, multiple replicated devices can share the same metadata device, each using a separate index. Each index occupies 128 MiB of data, which corresponds to a replicated device size of at most 4 TiB with two cluster nodes. We recommend not to share metadata devices anymore, and to instead use the lvm volume manager for creating metadata devices as needed. When the index form of this parameter is not used, the size of the lower-level device determines the size of the metadata. The size needed is 36 KiB + (size of lower-level device) / 32K * (number of nodes - 1). If the metadata device is bigger than that, the extra space is not used. This parameter is required if a disk other than none is specified, and ignored if disk is set to none. A meta-disk parameter without a disk parameter is not allowed.
NOTES ON DATA INTEGRITY
DRBD supports two different mechanisms for data integrity checking: first, the data-integrity-alg network parameter allows to add a checksum to the data sent over the network. Second, the online verification mechanism ( drbdadm verify and the verify-alg parameter) allows to check for differences in the on-disk data.Both mechanisms can produce false positives if the data is modified during I/O (i.e., while it is being sent over the network or written to disk). This does not always indicate a problem: for example, some file systems and applications do modify data under I/O for certain operations. Swap space can also undergo changes while under I/O.Network data integrity checking tries to identify data modification during I/O by verifying the checksums on the sender side after sending the data. If it detects a mismatch, it logs an error. The receiver also logs an error when it detects a mismatch. Thus, an error logged only on the receiver side indicates an error on the network, and an error logged on both sides indicates data modification under I/O.The most recent example of systematic data corruption was identified as a bug in the TCP offloading engine and driver of a certain type of GBit NIC in 2007: the data corruption happened on the DMA transfer from core memory to the card. Because the TCP checksum were calculated on the card, the TCP/IP protocol checksums did not reveal this problem.